






 

 



 

 

Fig. 1. The proposed method of local interpolated compressive sampling for internet traffic reconstruction  

I. LOCAL INTERPOLATION 

The interpolation solution is solved through a similarity 
approach between rows and columns to improve accuracy. If 
two rows/ columns show the similarity, then it can be assumed 
that one could be a great interpolant to another. We consider that 
the similarity of elements is influenced by the effect of the 
similarity between rows represented as 𝛼 and the influence of 
similarities between columns expressed in 𝛽. We compare two 
methods to obtain the similarity, ie: correlation and Euclidean 
norm.  

A. Correlation 

Correlation uses the principle that the greater value of the 
correlation coefficient between rows / columns then the two 
rows / columns are similar. A traffic matrix of 𝑿 sized (𝑖 × 𝑗) 
and missing elements at position 𝑿𝒎(𝒎, 𝒏), then the correlation 
procedure on traffic matrix 𝑿 are as follows:  

Step 1) For the missing value in 𝑿𝒎(𝒎, 𝒏), calculate the 

correlation coefficient between the row in the missing 

element 𝑿𝒎 and the other row 𝑿𝒊 with 𝑖 =

 1,2,3, . . . , 𝑖 according to equation (1) below:  

 

𝜌( 𝑿𝒎, 𝑿𝒊) =  
𝑐𝑜𝑣( 𝑿𝒎, 𝑿𝒊)

√𝑐𝑜𝑣( 𝑿𝒎, 𝑿𝒎)𝑐𝑜𝑣( 𝑿𝒊, 𝑿𝒊)
 (1) 

         where 𝑚 ≠  𝑖. Save the result in 𝐶𝑟 
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Step 2) Calculate the correlation between column of 𝑿𝒏 with 

the other column of 𝑿𝒋with 𝑗 =  1,2,3, . . . , 𝑗 and 𝑛 ≠ 𝑗 as in 

equation (1) and save the result in 𝐶𝑐. 

Step 3) Find the maximum correlation coefficient in step 1 and 
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Step 4) Calculate the estimation results with correlation 

technique using equation (4) 
 

𝑿𝒆(𝒎, 𝒏) = 𝛼 𝑎𝑟𝑔 𝑚𝑖𝑛∀𝑖,𝑚≠𝑖 𝜌(𝑿𝒎, 𝑿𝒊) + 

                        𝛽 𝑎𝑟𝑔 𝑚𝑖𝑛∀𝑗, 𝑛≠𝑗 𝜌(𝑿𝒏, 𝑿𝒋) 

    

(4) 

where 0 ≤ 𝛼 ≤ 1,  0 ≤ 𝛽 ≤ 1,  𝛼 + 𝛽 = 1 

B. Euclidean Norm 

The Euclidean norm approach states that the closer distance 
of the rows/ columns are, the two rows/ columns are similar. A 
traffic matrix size 𝑿 (𝑖 × 𝑗) and missing elements at 𝑿𝒎(𝒎, 𝒏), 
then the Euclidean norm steps on traffic matrix 𝑿 are as follows: 

Step 1) For the missing value in 𝑿𝒎(𝒎, 𝒏), calculate the 

Euclidean norm between the row in the missing element 

𝑿𝒎 and the other row 𝑿𝑖 with 𝑖 =  1,2,3, . . . , 𝑖. The equation 

becomes:   

 

𝑑(𝑿𝒎, 𝑿𝒊) = √∑ (𝑿𝒎𝒋
− 𝑿𝒊𝒋

)
2

𝑗

𝑗=1

 (5) 

         where 𝑚 ≠  𝑖. Save the result to 𝐷𝑟  

Step 2) Calculate the Euclidean norm between column of 

𝑿𝒏 with the other column of 𝑿𝒋 with 𝑗 =  1,2,3, . . . , 𝑗 and 𝑛 ≠

𝑗 as in equation (6) and save the result in 𝐷𝑐. 

 

𝑑(𝑿𝒏, 𝑿𝒋) = √∑(𝑿𝒏𝒊
− 𝑿𝒋𝒊

)
2

𝑖

𝑖=1

 (6) 

Step 3) Find the minimum norm from step 1 and 2 

Step 4) Calculate the estimation of Euclidean norm 𝑿𝒆(𝒎, 𝒏) 

using the following equation (7) 

 

𝑿𝒆(𝒎, 𝒏) = 𝛼 𝑎𝑟𝑔 𝑚𝑖𝑛∀𝑖,𝑚≠𝑖 𝑑(𝑿𝒎 , 𝑿𝒊) + 

                        𝛽 𝑎𝑟𝑔 𝑚𝑖𝑛∀𝑗, 𝑛≠𝑗 𝑑(𝑿𝒏, 𝑿𝒋)      

    

(7) 

where 0 ≤ 𝛼 ≤ 1,  0 ≤ 𝛽 ≤ 1,  𝛼 + 𝛽 = 1 



 

II. EXPERIMENTAL AND RESULTS 

A. Missing Patterns 

We use six missing patterns such as Missing Row Elements 

(MRE), Missing Column Elements (MCE), Missing Rows at 

Random (MRR), Missing Columns at Random (MCR), Missing 

Elements at Random (MER), and Combine Missing Patterns 

(CMP) [3]. The missing is done by making a zero value on TM. 

This process is create randomly with the probability of 

missing(𝜌).  
MRE is a missing pattern by selecting one row and 

eliminating some elements in the selected row. Whereas MCE 

is a missing that chooses single column in TM and omits some 

elements in the column chosen. The missing model that deletes 

rows randomly is MRR, whereas the column is MCR. MER is 

missing by removing random elements. CMP is a combination 

of all previous missing models.  

 

B. Performance Parameter 

The performance parameter used to calculate the accuracy 

of TM reconstructed is Normalized Mean Square Error 

(NMSE). The NMSE is Mean Square Error (MSE) between the 

original TM 𝑿(𝒊, 𝒋) and the reconstructed TM �̂�(𝒊, 𝒋) 

normalized by MSE of original TM, which is mathematically 

expressed in the following equations [16]:  

 

      𝑁𝑀𝑆𝐸(𝑿(𝒊, 𝒋), �̂�(𝒊, 𝒋)) =
𝑀𝑆𝐸 (𝑿(𝒊, 𝒋), �̂�(𝒊, 𝒋))

𝑀𝑆𝐸 (𝑋(𝑖, 𝑗),0)
   

(8) 

                                              =
‖𝑿(𝒊, 𝒋) − 𝑿 ̂(𝒊, 𝒋)‖

2

2

‖𝑿(𝒊, 𝒋)‖2
2  

 

The other metric is Performance Improvement Ratio (PIR). 

The PIR denotes an increasing in a new approach to the old 

method. In this study, we used NMSE to calculate PIR, which 

is defined as follows [17]: 

 

𝑃𝐼𝑅 =
𝑁𝑀𝑆𝐸𝑙 − 𝑁𝑀𝑆𝐸𝑛

𝑁𝑀𝑆𝐸𝑙
 (9) 

 

where 𝑁𝑀𝑆𝐸𝑙  denotes performance parameter from old 

algorithm, while the 𝑁𝑀𝑆𝐸𝑛 states the performance of the 

proposed algorithm. 

 

C. Proposed Reconstruction Algorithms 

This work incorporates the local interpolation consisting of 

correlation and Euclidean norm technique with the CS methods 

(SRSVD, SVDL1, IRLS, and OMP) in order to improve its 

performance. A combination of correlation with CS 

reconstruction algorithms produces new methods called 

Correlation SRSVD (CSRSVD), Correlation SVDL1 

(CSVDL1), Correlation IRLS (CIRLS), and Correlation OMP 

(COMP). While the enhance of Euclidean norm is named 

Euclidean SRSVD (ESRSVD), Euclidean SVDL1 (ESVDL1), 

Euclidean IRLS (EIRLS), and Euclidean OMP (EOMP). 

Fig. 2 and Fig. 3 show the relationship between NMSE and 

the probability of missing on different missing types and 𝛼 

parameter. The X-axis is missing value and the Y-axis is the 

NMSE. This test describes the effect of missing value on the 

reconstruction result. 

 

 

 

      
(a) Correlation on MRE (b) Correlation on MCE (c) Correlation on MRR 

   
(d) Correlation on MCR (e) Correlation on MER (f) Correlation on CMP 

Fig. 2. NMSE and missing value relationship in different missing patterns using correlation technique 



 

 

   

(a) Euclidean on MRE (b) Euclidean on MCE (c) Euclidean on MRR 

   

(d) Euclidean on MCR (e) Euclidean on MER (f) Euclidean on CMP 
Fig. 3. NMSE and missing value relationship in different missing patterns using Euclidean norm technique 

Fig. 2. (a) shows NMSE on MRE pattern with 𝛼 parameter 

0.3. All proposed algorithms can improve accuracy with NMSE 

results <0.08. The increasing of missing probabilities has no 

effect on NMSE. Because missing elements only occur on one 

row so that the number of available samples is still quite a lot. 

In missing probability 0.9 on one row is equal with 0.6% 

missing from the total number of matrix elements. Fig. 3. (a) 

expresses NMSE on MRE missing pattern with 𝛼 parameter 0. 

All proposed algorithms can improve accuracy with NMSE 

results <0.07. EOMP shows the largest NMSE decline, 

followed by ESVDL1 and EIRLS. While the ESRSVD decrease 

in NMSE is not significant. 

Fig. 2. (b) describes the NMSE value of the MCE pattern 

with 𝛼 parameter 0.5, while Fig. 3. (b) at 𝛼 parameter 0.2.  The 

amount of missing probability has no effect on NMSE, this is 

because the missing probability of 0.9 on one column is 

identical to 0.3% missing of whole elements matrix. The 

reconstruction algorithm applied to the missing MCE pattern 

always yields the best accuracy compared to the other missing 

techniques. The simulation results show the NMSE value less 

than 0.05 on all the proposed algorithms. 

Fig. 2. (c) indicates the NMSE on MRR pattern with 𝛼 

parameter 0.3, whereas  Fig. 3. (c) with 𝛼 parameter 0.5. The 

NMSE value increases with increasing the probability of 

missing. The proposed algorithm can only slightly lower the 

value of NMSE, especially in CSRSVD and ESRSVD. While 

COMP and EOMP show the best performance.  

Fig. 2. (d) describes NMSE on MCR pattern with 𝛼 

parameter 0.5, while Fig. 3. (d) at 𝛼 parameter 0.8. In this 

model, the NMSE value is proportional to the probability of 

missing. All proposed algorithms succeeded in decreasing the 

NMSE, except on COMP and EOMP. Its produce poor 

performance due to an increase in NMSE value when the 

probability of lost traffic starts from 0.8. 

Fig. 2. (e) and Fig. 3. (e) illustrate the NMSE on MER pattern 

with 𝛼 parameter 0.5. In Fig. 2. (e), some conditions suggest 

that the proposed algorithm decreases the performance of the 

accuracy results, as shown in the probability of missing 0.5. 

This is due to the random nature of the missing traffic elements 

so that existing traffic does not have a high correlation with 

each other to predict the values of missing elements. In Fig. 3 

(e) shows that only ESRSVD decreases NMSE even though the 

decrease is very low. The other proposed algorithms can not 

work well. This is greatly influenced by the random way of 

missing elements so that the present elements in the matrix may 

have bit of similarity. Therefore, the new algorithm is difficult 

to get the closest distance between matrix elements. 

Fig. 2. (f) shows NMSE on CMP pattern with 𝛼 parameter 0, 

while Fig. 3. (f) at 𝛼 parameter 0.5. In Fig. 2 (f) indicates that 

significant decrease occurs in CIRLS. In Fig. 3. (f) shows that 

the proposed algorithms do not work well where some tests are 

able to decrease NMSE, and some actually increase NMSE. It 

is because the CMP is a combination of some missing randomly 

chosen, such as missing rows, missing columns, and missing 

elements, then the probability of a certain missing can result in 

intersection between missing processes so that the amount of 

missing becomes less or even vice versa. COMP and EOMP are 

not suitable for CMP missing model. 



 

D. Similarity Parameter 

The similarity parameter that used are two, namely the 

similarity between rows (𝛼) and similarities between columns 

(𝛽). The similarity between rows implies the relationships that 

occur between links, while the similarity between columns 

refers to the relationship between time. The experiments were 

performed 10 times and the average performance improvement 

result shown in Fig. 4. The results are presented only in the case 

of missing MER.  

Performance improvements at all parameter 𝛼 occur in 

CSRSVD and ESRSVD, although the increase is very small, ie 

less than 12% in CSRSVD and less than 1% in ESRSVD. While 

on the other algorithms, performance improvement is strongly 

influenced by correlation factor between row and column. In 

CIRLS and EIRLS, 90% of the experiments show performance 

improvement, and the highest performance occurs at α = 1 and 

β = 0 on CIRLS, it indicates that accuracy is only affected by 

correlation between rows. On EIRLS, the best performance 

occurs at α = 0.7 and β = 0.3. In CSVDL1, 60% of the 

experiments showed the highest performance improvement 

with α = 0.3 and β = 0.7, this illustrates that the correlation 

between columns is more important than the correlation 

between rows at the time of reconstruction. ESVDL1, 60% of 

the experiments showed the highest performance improvement 

occurred at α = 0.8 and β = 0.2 On COMP, 20% of the 

experiments increased, and the maximum performance 

occurred at α = β = 0.5. While EOMP, 10% experiments 

increased, and maximum performance occurred at α = 0.4 and 

β = 0.6. 

  
                                                   (a) SVDL1                          (b) IRLS 

    (a)        

                                                          (c) SVDL1                           (d) IRLS 

Fig. 2. The influence of parameter 𝜶 on the MER missing pattern in the proposed algorithms (a) SVDL1, (b) IRLS, (c) SRSVD, (d) OMP 

E. Running Time 

The running time testing aims to determine the effect of time 

that occurs due to the addition of local interpolation. Table I 

shows the experimental results that performed on MRE case 

with probability missing 50%, parameter α = 0 and β = 1. The 

addition of correlation techniques led to an increase in average 

running time of 9.83 seconds compared to the original 

algorithm. Whereas in addition to the euclidean norm 

technique, the addition of running time has no significant effect. 

The average running time is about 0.4 seconds. 

 

 

 

 

TABLE I.  RUNNING TIME FOR RECONSTRUCTION ALGORITHMS 

Reconstruction 

Algorithms 

Running Time (second) 

Original 

Technique 

Combination 

Correlation 

Enhanced 

Euclidean Norm 

SVDL1 23.2259 33.1651 23.2712 

IRLS 1.735798 11.91579 2.03541 

SRSVD 0.870585 10.29429 1.503879 

OMP 0.868778 10.64318 1.45948 

 

 



 

III. CONCLUSIONS 

Enhance norm Euclidean and Combination of Correlation 

on CS reconstruction algorithm (SVDL1, IRLS, SRSVD, 

OMP) can improve accuracy in case of lost traffic MRE and 

MCE. ESRSVD and CSRSVD do not provide significant 

performance improvements since SRSVD has been able to 

work well in TM reconstruction. EIRLS and CIRLS can 

provide significant performance improvements even though 

NMSE values still need to be fixed. EOMP and COMP are not 

suitable for performance improvements, especially in lost 

MCR, MER, and CMP traffic patterns. The addition of local 

interpolation results the increased of running time. The time 

required for the correlation process is longer than the time of 

the euclidean norm process.  
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