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A method for estimating traffic matrix is needed for network operator. Traffic matrix is an essential parameter
for network maintenance, network planning, and network monitoring. However, it is very difficult to measure it
directly. Hence, traffic matrix is inferred from direct link measurement by estimation. There are various tech-
niques for traffic matrix estimation. This paper proposed SVD-l1 (Singular Value Decomposition-l1) for traffic
matrix estimation based on compressive sampling. The proposed method is compared with IRLS (Iteratively
Reweighted Least Square), SRSVD (Sparsity Regularized Singular Value Decomposition), OMP (Orthogonal
Matching Pursuit), and interpolation techniques. The result showed that the NMAE (Normalized Mean Abso-
lute Error) performance parameter of SVD-l1 as good as SRSVD and better than the other algorithms. The
computational time of SVD-l1 is the longest compared to others.
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1. INTRODUCTION
Traffic Matrix (TM) is a crucial information of network opera-
tor for network management, planning, and traffic engineering.
It represents the volume of traffic flowing between a source to a
destination in a network.1 It is not easy for network operator to
measure traffic matrix directly, especially for a large-scale net-
work. The problem can be solved by estimating traffic matrix
based on SNMP (Simple Network Management Protocol) link-
level measurement from network devices.

In a real-network, a significant missing value of traffic matrix
measurement can happen. Currently, there are number of research
for estimating a traffic matrix. Usually, the problem is solved
as a liner-inverse problem using Poisson distribution.2�3 Fur-
ther research on the TM estimation is developed using normal
distribution.4 Following studies consider the properties of real-
traffic network and the correlation between nodes in a network.
This research has resulted in the development of several grav-
ity models such as simple gravity model,5 generalized gravity
model,6 tomo-gravity model.6�7 Another estimation method is the
PCA (Principle Component Analysis) that overcome the problem
of huge traffic matrix dimension.1�8 The Compressive Sampling
(CS) model was also introduced to approximate traffic matrix by
solving an optimization problem as a low-rank matrix.9–11

CS is a new paradigm for acquisition and reconstruction in
signal processing.12–14 CS works on signal that has sparse rep-
resentation or low-rank nature and incoherence property.15�16

Interpolation is a technique for completion to the missing value.

∗Author to whom correspondence should be addressed.

In the term of matrix, interpolation is referred to as matrix
completion.15

Contributions: Both the CS and interpolation methods can
solve the problem of traffic matrix estimation. In this paper,
we use Singular Value Decomposition (SVD) to obtain a low
rank matrix and represent it as a temporal structure. The
researches modelled traffic matrix as purely spatial,1�6�10 purely
temporal,2�10 and combining spatio-temporal.9�11 We use a rout-
ing matrix whose elements are ‘0’ or ‘1’ as the measurement
matrix for estimating TM. A real dataset from Abilene (Inter-
net2) is used for this simulation.17 We compare traffic matrix
estimations using linear interpolation, CS-SVD−l1, CS-IRLS,

18

CS-SRSVD,9�11 and CS-OMP.19

2. PRELIMINARIES
2.1. Traffic Matrix
A traffic matrix is a non-negative matrix X = �xij � that expresses
the volume of traffics flowing between source i to destination j .
For a network with n-nodes, the traffic matrix consists of N =
n× n source-destination pairs at a moment. If TM works on T

time intervals, it can be considered as a 3-dimensional array X ∈
Rn×Rn×RT . TM can be expressed as column vector, Xt (where
t indicates time point). As the time changes, the TM changes
from 3-dimensional array into 2-dimensional array.

As an example, the Abilene network topology consisting of
12 nodes is shown in Figure 1.17 The TM is a 2-dimensional
array X ∈ Rn×Rn where X represents at one time as shown in
(1). X can be converted into a column vector (N × 1� where
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Fig. 1. Abilene topology.

N = n2 and xi (i = 1�2� � � � �N ) as traffic volume for all pairs
from source to destination. For the TM that is measured during
the time T , the dimension of TM is �N × T � as shown in (2).
In this equation X�n� t� denotes the traffic measurement of n-
th source-destination at time t, where n = 1, 2� � � � 12× 12, t =
1�2� � � � � T .

X =

s1
s2
s3
���
s11
s12

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 x13 · · · x133
x2 x14 · · · x134
x3 x15 · · · x135
���

��� · · · ���
x11 x23 · · · x143
x12 x24 · · · x144

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1�1 x1�2 x1� T
x2�1 x2�2 x2� T
x3�1 x3�2 x3� T
���

���
���

x13�1 x13�2 � � � x13� T
���

���
���

x25�1 x25�2 x25� T
���

���
���

x144�1 x144�2 x144� T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

This paper aims to estimate the actual-TM based on measure-
ment results at link-level. The relationship between the link-loads
Y and TM (X) can be expressed by the following linear matrix
equation:

Y = AX (3)

where A is a routing matrix, which describes links that are used
by the nodes.1 The estimation of the real-TM is solved by finding
an optimal solution X̂ to (3) from link-load measurement Y that
approximates the original X as closely as possible.

2.2. Compressive Sampling (CS)
In the compressive sampling, there are 2 requirements: the TM
is low-rank15 and the routing matrix is incoherent.16 Because of
the TM is not a low-rank matrix, we use SVD as a tool to obtain
a low-rank approximation. SVD decomposes N ×T according to
(4).8�21

X = U�V T (4)

where U is a N ×N unitary or orthogonal matrix (i.e., UUT =
UT U = I), and V is a T × T unitary or orthogonal matrix

(i.e., VV T = V T V = I�, with V T is the transpose of V , and � is
an N × T diagonal matrix containing non-zero elements as the
singular values �R of X. The singular values are arranged so
that �1≥ � 2 ≥ · · · ≥ �r . The number of non-zero singular values
represent the rank of matrix that indicates the number of lin-
early independent rows or columns. If �min�N �T �, the TM is
low-rank. The TM is assumed to have a multiplicative low-rank
structure, it can be rewritten as:

X = U�V T =
min�N �T �∑

r=1

�rurv
T
r (5)

where ur is the ith columns of U and vr is the ith
columns of V . The approximation of X from the SVD by keeping
only the largest singular values in the summation and dropping
the others is equivalent to

X̂ =
R∑

r=1

�rurv
T
r =

R∑
r=1

�rBr (6)

where X̂ is the best rank-approximation of X and Br is matrix
that constructed by rank-1.
A routing matrix �A� is generated by random Boolean.10�20

It is constructed to obey the GUP (Generalized Uncertainty
Property).16 According to the CS theory, the minimum number
of sample m is given by the following expression (7).10�22

M ≥ C

(
R log

N

R

)
(7)

where, C is a positive constant from 1 to 2, and whereas R is
the number of non-zero singular values.

3. ESTIMATION METHOD OF REAL-TM
3.1. Interpolation
Interpolation is a method that uses the nearest neighbor values
to construct an unknown value. The TM (X) interpolation is per-
formed for each column with length of X rows. The interpolation
formula is shown in the following Eq. (8).23

Xrow�i� =mean �Xrow�i+�+Xrow�i−�� (8)

where Xrow�i� is estimation row matrix of X, Xrow�i+� is a row
matrix neighbors above Xrow�i�, and Xrow�i−�� is a row matrix
neighbor below Xrow�i�.

3.2. CS-SVD-l1
The TM estimation X̂ must have an optimal solution that approx-
imates the original X as closely as possible with respect to l1
norm, following Eq. (9).24

min�X− X̂�1� subject to AX = Y (9)

where � · �1 is the l1 norm used to measure the error between
TM X and X̂.

3.3. CS-Iteratively Reweighted Least Square (IRLS)
IRLS is used to solve optimization problem of Eq. (3) with lp
norm estimation, where 0< p < 1.25 That is

min�X− X̂�pp� subject to AX = Y (10)
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IRLS uses weights to estimate TM that is defined as follows:

Wp = ��X′X�2 +	I
�p/2�−1 (11)

where 	 is a regularization parameter added to ensure that Wp is
well defined, and 	 > 10−9. The estimation TM can be obtained
from the equation:

X̂ =QXT �XQXT �−1Y (12)

where Q as a diagonal matrix with the following value:

Q = 1/Wp (13)

3.4. CS-OMP
OMP estimates TM (X) which determines columns of A that par-
ticipates in the measurement of Y . The idea behind the algorithm
is to choose columns in a greedy fashion. At each iteration, a col-
umn of A which is highly correlated with the residual part of Y is
chosen. Then reducing any contribution to the Y yields residue.
After k iteration, algorithm will identify the right set from the
columns. The procedure of the algorithm are as follows:19

(1) Initialize the residual R0 = Y , index set �0, and the iteration
counter t = 1. And Ao is an empty matrix.
(2) Find the index �t that solves an easy optimization problem:

�t = argmax
j=1���M

�	Rt−1�Aj
� (14)

If the maximum occurs of the inner product, break the tie
deterministically.
(3) Augment the index set:

�t = �t−1 ∪ �t� (15)

The matrix of chosen atoms:

At = �At−1a�t

 (16)

(4) Solve a least squares problem to obtain the estimation:

xt = argmin
x

�Y −AtX�2 (17)

(5) Calculate the new approximation of the data and the residual:

at = At −Xt and Rt = Y −at (18)

Increments t and returns to Eq. (3) until t < k. The estimate
X̂ for the ideal matrix has non zero indicates at the component
listed �k. The value of the estimate X̂ in component �j equal
the jth component of Xt .

3.5. CS-SRSVD
SVD can created as a factorization of a matrix X, that can be
expressed as:

X = U�V T = LRT (19)

where L= U�1/2 and R= V�1/2. The low rank problem can be
formulated as the following rank minimization:

min rank�X�� subject to A�X�= B (20)

where rank�·� is the rank of a matrix, A�·� is a linear operator
that works on matrix X, B denotes the set of direct measure-
ments. Because L and R have low Frobenius norm, then (20) is
equivalent to:

min rank�L�2F +�R�2F � st A�LRT �= B (21)

Furthermore, because of the real TM (X) is not exactly low rank,
the regularized parameter (�) is added to solve the optimization
problem:

min �A�LRT �−B�+���L�2F +�R�2F � (22)

where � is parameter that control tradeoff between a precise fit
to the measured data and the purpose of low rank target. It names
SRSVD interpolation.9

4. EXPERIMENTAL RESULT
4.1. Data
We use real TM data from Abilene (Internet2)17 that used pre-
viously in various studies.9–11 The Abilene network consists of
n= 12 nodes and r = 54 links. There are 144 source-destination
pairs (N = 144). The real TM is collected every 5 minutes.
We examine for a day, so the Abilene TM data is denoted by X
is a 144×288 matrix. Each column represents a 5-minute traffic
matrix snapshot and each Source-Destination row represents a
time-series of traffic intensities for each Source-Destination pair.

Figure 2 shows low-rank structure from Abilene TM that
resulted from SVD process. This figure says represents that the
top several singular values occupy most of the energy.

4.2. Metric
The metric used to measure the error accuracy is Normalized
Mean Absolute Error (NMAE). That is,9�11

NMAE�X� X̂�=
∑N

i� j�A�i�j�=0 �X�i� j�− X̂ �i� j��∑N
i� j�A�i�j�=0 �X�i� j��

(23)

where X̂ is the estimated error, and A�i� j� = 0 means the miss-
ing value in X�i� j�. The NMAE only calculate errors on the
missing values.

4.3. Performance Comparison
We compare performance of estimation algorithm such us
SVD−l1, SRSVD, IRLS, OMP, and Interpolation. These

Fig. 2. Low-rank structure of abilene TM.
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(a) Loss probability (ρ = 0.1) (b) Loss probability (ρ = 0.7)

Fig. 3. Input and estimation traffic, (a) Loss probability (p = 0�1), (b) Loss probability (p = 0�7).

algorithms use the same parameters such as: R = 30 and C = 2.
Following a data loss pattern, a series of row random missing
value from low loss probability (0.01) to high loss probability
(0.9) is implemented.

To evaluate the accuracy of the algorithms, we select a max-
imum traffic from the network to be tested. There are two sce-
narios:
(1) loss probability = 0�1 and
(2) loss probability = 0�7.

Figure 3 show the input (original) traffic by the black lines and
the estimation results of TM estimation algorithms. Figure 3(a)
shows the TM estimation results for loss probability 0.1, while
Figure 3(b) shows the loss probability 0.7. We can see from
Figure 3(a), that the SVD-l1, SRSVD, Interpolation can estimate
the TM precisely for low loss probability, but the OMP and IRLS
can not perform well. In Figure 3(b), we point out that the pro-
posed method SVD-l1 is the best estimator than the others for
loss probability (p = 0�7).

Figure 4 showed the absolute error that is difference between
the original traffic and estimation results. Figure 4(a) illustrates
the absolute error for loss probability 0.1, while Figure 4(b)

(a) Loss probability (ρ = 0.1) (b) Loss probability (ρ = 0.7)

Fig. 4. Absolute error, (a) loss probability (p = 0�1), loss probability (p = 0�7).

illustrates the loss probability 0.7. We can see from Figure 4,
that the OMP algorithm produces estimation with large absolute
errors both in low and high loss probability, followed by IRLS
algorithm. Interpolation method generates small absolute errors
in low loss probability, but large absolute errors in high loss
probability. We observe that the SVD-l1 and SRSVD have small
absolute error for low and high loss probability.
Figure 5 showed NMAE parameter for row random loss TM

with loss probability from 0.01 to 0.9. The NMAE of all esti-
mation algorithms have an ascending trend along with increment
of the loss probability. Interpolation achieves best performance
for low loss probability less than 0.1. In essence, interpolation is
not suitable for resolving the problems of row random loss. This
is because the row of TM represents a link in the network, and
between rows are not correlated with each other. This is indicated
on the increasing of NMAE for loss probability greater than 0.1.
SVD-l1 and SRSVD have a similar performance and outperform
all algorithms for whole loss probability.
Figure 6 showed the computational time for all estimation

algorithms. In general, the computational time increases with
the increasing of loss probability. The SVD-l1 has the longest
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Fig. 5. NMAE comparison between estimation algorithms for different loss
probability.

Fig. 6. Computational time comparison between estimation algorithms for
different loss probability.

computing time, which is about 15.7–17.8 s, while the other
algorithms have less than 1 s. Based on this results, the OMP
algorithm has the fastest computational time.

5. CONCLUSIONS
Internet traffic matrix estimation based on compressive sam-
pling such us SVD−l1, IRLS, SRSVD, OMP produce a better

performance than the conventional method (Interpolation). The
SVD−l1 and SRSVD exceed the other algorithms for all data
loss probability. While the Interpolation has good performance
only for low loss probability (<0.1). The OMP computing time
is fastest, while SVD is slowest.
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