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Abstract: Missing traffic is a commonly problem in large-

scale network. Because the traffic information is needed by 
network engineering task for network monitoring, there are 
several methods that recover the missing problem. In this paper, 
we proposed missing internet traffic reconstruction based on 
compressive sampling. The main contributions of this study are as 
follows: (i) explore the influence of the six missing patterns on the 
performance of the traffic matrix reconstruction algorithm; (ii) 
trace the link sensitivity; and (iii) detect the time sensitivity of the 
network. Using Abilene data, the simulation results show that 
compressive sampling can perform internet traffic monitoring 
such as reconstruction from missing traffic, finding link 
sensitivity, and detecting time sensitivity. 
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1. Introduction 
 

Nowadays, the growth of internet network increases rapidly. 
As a result of this growth, network monitoring becomes 
extremely difficult. Network monitoring is a process of 
collecting and analyzing information from a network and 
utilize this information for managing the network resources 
effectively. The information that can be used for monitoring 
are, such as traffic, packet loss, delay, etc. This information 
can be obtained from direct measurement of network devices 
such as routers or switches. The measurement results 
indicate information flow in a set of links between source 
nodes to destination nodes. The links connect the nodes in 
the network topology. In reality, such information may be 
incomplete due to nodes or links damages.  Therefore, it is 
important to recover accurately information of all links from 
incomplete measurement because many network engineering 
tasks involved these information that very sensitive to 
missing information.  
A simple method to estimate the missing information is local 
interpolation. It can recover the missing information at any 
position based on the known information. Some research 
have participated in this area, such as K-Nearest Neighbors 
(KNN) [1], interpolation [2], [3]. These methods have good 
performance only for estimating low missing probability, but 
perform poorly when high missing probability occurs.  
Nowadays, there is an emerging method for recovering data 
from incomplete information named Compressive Sampling 
(CS). CS can recover missing values of a signal as far as that 
signal is sparse [4], [5], [6]. Since sparse or compressible 
signals are involved in many applications, CS has been 
employed in various fields such as image reconstruction [7], 
direction of arrival estimation [8], radar detection [9], [10], 
waveform recovery [11], network traffic monitoring [1], etc.   
In this paper, we concentrate on the observation of faults in 
the network and solve these problems with CS technique.  

There are three focusses of this research, which are, the 
reconstruction of the missing traffic matrix (TM), the 
detection of link sensitivity, and the detection of time 
sensitivity.  
We compare 4 CS reconstruction methods, which are 
Sparsity Regularized Singular Value Decomposition 
(SRSVD) [1], L1 norm optimization [12], Iteratively 
Reweighted Least Square (IRLS) [13], Orthogonal Matching 
Pursuit (OMP) [14]. To compare with standard time series 
analysis method, we use  Interpolation technique [1], [15].  
We apply various missing patterns as cases on the actual 
network. This missing scenario is randomly chosen with 
missing probability from 0.01-0.98. This observation aims to 
obtain whole internet traffic information from the limited 
source.  
In this paper, the row of TM represents a connection between 
nodes, whereas column represents the time series of 
observations. Link sensitivity indicates how a certain link 
will affect the traffic on the whole network. We remove a 
row of TM one by one in order to know the sensitive of a 
row that is currently influence the results of reconstruction. 
Detection link sensitivity has a purpose of determining the 
best path that can be passed over the network and isolate the 
bad links that cause the anomaly. 
Time sensitivity indicates how a certain part of the time will 
influence the whole network. In this paper, we drop one by 
one the column of TM in order to know which is very 
dominant on the results of reconstruction. This information is 
very useful for decision-making in the network settings.  
This paper is arranged in a systematic Section as follows. 
The related work on CS approaches for network monitoring 
is presented in Section 2. Section 3 points out the research 
methods. The experiment results obtained from simulation 
using Matlab are given in Section 4. Finally, conclusions are 
provided in the last Section, also the future work.   
 

2. Related Work 
 

Studies on CS applications for network monitoring had been 
done, for example, by Roughan et al. [1], and Chen, et al. 
[16]. Roughan et al. proposed Sparsity Regularized Matrix 
Factorization (SRMF) for solving various of TM issues 
covering network tomography, detection an anomaly, and 
prediction of traffic [1]. In [16], Chen, et al. proposed LEN 
decomposition technique that enables to present of missing 
data, calculation errors and traffic anomalies for network 
analytics. 
Huibin et al. used spatial traffic similarity and temporal 
smoothness feature to reconstruct the missing traffic and  
reported that CS has the capability of reconstructing missing 
traffic up to 98% from the total traffic with error 
reconstruction below 32% [17]. Nie et al., developed a 
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method to fix traffic from end to end increasingly accurate 
using Flow Sensing Reconstruction (FSR) [18].  
In traffic anomaly (for example, unusual traffic spikes on 
several links), CS can detect, identify, and quantify the 
anomaly  [19], [20], [21], [22]. Lakhina, et al., detected the 
anomaly of time series traffic matrix using Principal 
Component Analysis (PCA) [19]. This method does not 
associate temporal correlation between the time series. In 
another work [20], the authors improved by detecting and 
localizing congested links using greedy iteration algorithm. 
In [21], Bandara, et al., proposed adaptive CS that achieves 
99% fault detection rate for network fault localization. 
Davina, et al., study a complex correlation to detect attacks 
on the large-scale network [23].   
In network tomography, CS provides internal performance 
and QoS characteristics of a network using information from 
endpoint data [21], [24], [25]. Vardi created a term network 
tomography that indicates to the issue of approximating 
traffic matrix from link measurement on the network [24]. 
He used Poisson distribution to represent traffic matrix, but 
this method can not always model the real condition of 
network traffic.  In [25], the authors solved the problems of 
link delay estimation in the congested network using Fast 
Reference-based Algorithm for Network Tomography via 
Compressive Sensing (FRANTIC) algorithm.  
In traffic forecasting, Principal Component Analysis (PCA) 
predicted the traffic that flows between source-destination in 
the network for future user demands [26]. This paper 
showed low effective rank in measurements using temporal 
matrix traffic. 
 

3. Research Method 
 

There are several parameters that can be observed in a 
network, such as the traffic flow, packet delay, and packets 
loss. These parameters are used to monitor and analyze the 
quality of the network.   
Traffic is the amount of data that traverses in the network. It 
often happens that due to nodes (routers or servers) shut 
down or links break, there is some missing traffic in certain 
nodes or links at a certain time. Missing traffic on node � at 
time � will correspond to a loss value on traffic matrix at (�, �) position. Detail description on traffic matrix will be 
discussed in the next section. 
 

3.1 Traffic Matrix Representation 
 

Traffic flow on a network that has � nodes at a certain time 
can be represented as a matrix � with dimension of � × �. 
An element (�, �) on � represents traffic flow from node � to 
node �. This matrix � is called instantenous traffic matrix. 
Since the observation of traffic flow is done over a certain 
time interval (∆�) and updated regularly, then it is 
convenience to rearrange the matrix � of dimension � × � 
for observation time ∆� into a vector ��  of dimension � ×1. Mathematically, any element �(�, �) ∈ � is translated into ��(�, 1) ∈ �� ,where � = � + � × (� − 1);  � = 1, 2, … , �  and  � = 1, 2, . . ., �. As the observation is done on regular time 
interval ��  (� = 1, 2, … , �), the traffic matrix ��  at each 
time interval �� can be collected column-wise to produce � × � link-time traffic matrix �. Any column � of matrix � 
represents the traffic of network at time �. 
Consider a simple example of a network consisting of three 
nodes as shown in Figure 1. Using this particular network, 

we have the instantenous traffic matrix �, reshaped 
instantenous traffic matrix �� , and traffic matrix  � which 
are   
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Figure 1. A network with 3 nodes 

 

3.2 Link Numbering Assignment 
 

As discussed previously, any )(�, �) represents a traffic link 
from node � to node �. It is more convenience to 
renumbering all the link (�, �), � = 1, 2, . . ., �;  � = 1, 2, . . .,�, into ke link number (*+) with *+ = 1, 2, . . ., �. Using 
this convention, the traffic matrix �,-,. can be denoted as �/0,. which indicates the traffic at link−*+ at time �. 
Table 1 shows an example of link number assignment of a 
network in Figure 1. 
 

Table 1. Link number assignment of network with 3 nodes 

Link (,, -) Link Number Assignment 

(1,1) 1 (2,1) 2 (3,1) 3 (1,2) 4 (2,2) 5 (3,2) 6 (1,3) 7 (2,3) 8 (3,3) 9 
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3.3 Missing Pattern 
 

Generally, traffic measurement on a network may encounter 
incomplete data since links or nodes can fail
missing values. In this paper, we evaluate
missing patterns on traffic matrix as shown in Figure 2. 
 

a) Missing Row Elements (MRE): this event simulates 
the loss of randomly selected TM elements from a 
random row. The row is randomly chosen, and the TM 
elements in the row are randomly chosen with missing 
probability �. This simulation illustrates the quality of 
the certain link state at a specific time.

b) Missing Column Elements (MCE)
loss by selecting a column randomly and missing TM 
elements from it at random with missing probability 
This simulation illustrates some missing data at a certain 
time. This event is caused, for example, by overloading 
at router data monitoring.  

c) Missing Rows at Random (MRR)
loss by selecting entire rows randomly with missing 
probability �. This event ilustrates some links failure or 
routers down for a long time. 

d) Missing Columns at Random (MCR
the entire column loss that selected randomly with 
missing probability �. There is no data at a certain time. 
In real situation, this case corresponds to the network 
breaks down or the software for mon
fails.  

e) Missing Elements at Random (MER
missing elements of TM at random with missing 
probability �. This represents data loss on a particular 
link in a certain time.  

f) Combine Missing Patterns (CMP): this simulation is a
combination of missing rows, missing
missing elements. Each missing component is chosen 
randomly with missing probability �
 

 

(a). MRE 

 

(c). MRR 
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Figure 2. Missing pattern
MRR, (d). MCR

3.4 Low-rank Representation using Singular Value 
Decomposition (SVD) 

 

It is important to translate the traffic matrix 
that the TM is sparse or compressible in that basis. One of 
such basis is Singular Value Decomposition (SVD), which 
can be used to decompose the TM (
of a + × � matrix � is denoted by 
 � = 23
where 2 is an + × + ortho242 = 5. 6	 is an � 	 � orthogonal matrix, 
646 � 5, with 64 is the transpose of
diagonal matrix that has content
as the singular values 78 of  �
with the result that 7� 9 7 9
non-zero singular values indicate
If  � ≪ ;��	�+, ��, then TM is 
rank approximation, Equation (4)

 

� � < 78
=>?	�@,(�

8A�
B,C,4 �

where D8 and E8 are the �FG columns of 
matrix constructed by rank-1. Hence, a rank
�H  using the SVD by holding 
the addition and discarding the others is equivalent to
 

�H �<78
I

8A�
 
Since �H  can be represented using 
value of SVD and � ≪ ;��	�+
base. 

3.5 Routing Matrix Representation
 

The routing matrix J is a K 	
number of links and + is the number of source
pairs. The matrix J � L8M is defined as 
part of the path for source-
L8M � 0. The routing matrix J
for the compression of the approximation matrix 
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(f). CMP 

Missing pattern, (a). MRE, (b). MCE, (c). 
CR, (e). MER, (f). CMP 

rank Representation using Singular Value 

ranslate the traffic matrix into a basis such 
that the TM is sparse or compressible in that basis. One of 

Singular Value Decomposition (SVD), which 
can be used to decompose the TM (�). Formally, the SVD 

is denoted by [27]: 

2364,    (4) 

orthonormal matrix, i.e. 224 �
orthogonal matrix, i.e. 664 �

is the transpose of 6, and O is a + 	 � 
that has content non-zero entries referred to 

�. These values are structured 
9 ⋯ 9 78. The total number of 

zero singular values indicate the number of rank matrix. 
TM is a low-rank matrix. For low-

Equation (4) can be rewritten as: 

� < 78
=>?	�@,(�

8A�
P,	, 

 
 (5) 

 
columns of Q and R.  The P, is a 
1. Hence, a rank-S approaches to 

 the greatest singular values in 
the others is equivalent to 

8 P, 
 

 (6) 

can be represented using � elements of singular 
+, �� then �H  is sparse in SVD 

Routing Matrix Representation 

	 + dimension, where K is the 
is the number of source-destination 

is defined as L8M � 1 if link � is 
-destination pair �, otherwise 
J is used as the sensing matrix 

for the compression of the approximation matrix �H  [17]. 
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3.6 Compressive Sampling (CS) 
 

CS is a new paradigm in signal processing [4], [28], with a 
capability to reconstruct data from an incomplete 
measurement. In order to perform successful reconstruction, 
CS exploit the special structure in the data structure which is 
the data sparsity. Data is called sparse if it can be expressed 
by a small number of significant components. In the TM 
case using SVD as the base,  sparsity means low-rank as the 
energy spectrum composed of low-rank singular values of 
the matrix. It is well known that TM can be estimated from a 
low-rank matrix [19], [26].  
Elements missing in traffic matrix can be considered as 
elements loss in compression. Therefore, it can be 
considered as a compression step in CS. On the TM 
reconstruction using CS, there is relationship between the 
measured traffic T and the TM ��� that expressed in a linear 
matrix equation as follows 

T � J� ,           (7) 
 

with T, J, � are K × �, K × +, and  + × � matrix 
respectively. J is a routing matrix which performs as 
measurement matrix in CS. It satisfies the Generalized 
Uncertainty Property (GUP) [29]. Corresponding with the 
theory of CS, the minimum number of rows in J is given as 
follows [30] K ≥ U (V WXY @

Z) ,         (8) 

   
where U is determined empirically with a range in value 
from 1 to 2, while V is the total of rank matrix used. 
 

3.7 Reconstruction Algorithm 
 

3.7.1 SRSVD 

SRSVD expressed SVD as a matrix factorization � and 
applied a regularization parameter to optimize the 
reconstruction of missing value. The factorization of � is 
equivalent to the form: 

� = 2O6( = /[4,         (9) 

where / = 2O�/ and [ = 6O�/. The low-rank feature has 
proved that it is possible to restore the missing values in a 
matrix.  The minimization of low-rank composition can be 
expressed as follows: 

 min SL��(�), subject to h(�) = P ,       (10) 

where  SL��(·) as the rank of a matrix, h(·) is a linear 
operator that executes on matrix �, and P  denotes the 
collection of actual measurements. Low norm factorization 
from (9) satisfies Frobenius so that (10) is equivalent to: 
  min SL��‖/‖k + ‖[‖k  , subject to h(/[() = P      (11) 
 
In addition, because the TM (�) is uncertain low-rank, then 
the regularized parameter (l) is added to solve the 
optimization problem: 

          min‖h(/[() − P‖ + l(‖/‖k + ‖[‖k ) ,      (12) 

where l is a parameter of regularization that keeps the 
tendency of precise measurement with the low-rank target. 
This technique is known as SRSVD that proposed in [1]. 

3.7.2 SVDL1 
 

The reconstruction of TM is discovering optimal solution for �H   into equation (7) of the measured traffic T that 
approaches the original � as near as possible, i.e., 

 

min m� − �Hm�
�
, subject to J� = T ,     (13) 

where ‖. ‖�� states the W� norm that used to calculate the error 
between the original TM (�) and the reconstructed TM (�H) 
[12]. 

3.7.3 IRLS 
 

IRLS finds the optimal solution for rank minimization using Wn norm, where 0 ≤ � ≤ 1. IRLS sets weight (pn) to 
estimate TM (�) and a parameter of regularization (q) to 
guarantee that pn is proper selected. The procedure of the 
algorithm are as follows [13]: 

 
(i) Initialize the weight rst = 5, regularization 

parameter q� > 0, and the iteration counter � = 1. 
While not convergen do: 
 

(ii)  Solve the minimum solution: 
 

         �� = arg min� 4y(rs.z{ �(�), st h(�) = P (14) 
 
(iii)  Find the new weight: 

 

   rs. = [(�.4�.)+q�5]~�z�  ,   (15) 

(iv) Choose regularization parameter: 
 

               0 < q��� < q�  (16) 
 

Increase � and return to (ii) until convergence. This 
algorithm reduces weighted using Frobenius norm 
of the traffic matrix (�) at each iteration, which is 
 

          4�(rs.�(�) = m(rs.){/��m�
�
  (17) 

 

3.7.4 OMP 
 

OMP estimates TM (�) which determines columns of � take 
part in the calculation of T. The concept of the algorithm is 
to choose columns in a greedy model. A column of J which 
has very high correlation with the remaining part of  T is 
chosen at each iteration. Then the T residue is substracted 
with the result generate the new residue. The procedure of 
algorithm uses the columns to recognize the proper set after � iteration. The algorithm processes are given as follows: 

[14]. 
 



61 
International Journal of Communication Networks and Information Security (IJCNIS)                                            Vol. 9, No. 1, April 2017 
 
(i) Set the residual [t � T, index set �t � ∅, and the 

iteration counter � � 1.  
 

(ii)  Select the parameter l� that resolves the case of 
optimization:  

 
                l� = arg ;L)8A�..�|〈[.z{, �8〉|             (18) 

 
If the dot product produces maximum value then 
solve the tie deterministically. 
 

(iii)  Add  l� to the the index set:  
 

                         Λ� = Λ�z� ∪ �l��    (19) 
 

The matrix of chosen atoms: 
 

                         J. = [J.z{  L��]  (20) 

 
We take Jt initialization parameter as an empty 
matrix. 

(iv) Calculate the estimation using a least squares 
procedure: 

 
           �. = arg ;��� ‖T −  J.�‖  (21) 

(v) Count the new approach of the data and the 
residual: 
 

           L� =    J.�.  ,      [. = T − L�  (22) 

Increment the iteration � and returns to equation 
step (ii) until � < �, � is the sparsitas level. The 

estimate of �H for the best possible matrix has non-
zero denotes at the index listed Λ�. The estimation 
result �H  in component l8 is equivalent to the �FG 
component of �.. 
  

3.7.5 Interpolation 
 

Interpolation is an easy method that takes the value from 
closest neighbor to construct incomplete values. The TM (�) 
interpolation is performed for each column with the length 
of � rows and for each row with the length of � columns. 
Interpolation formula is shown as follows [1] [15]. 

�H(,, -) = ;�L� ���y��(,) + �����(-)� ,  (23) 

��y��(,) = ;�L���y��(, + {) + �y��(, − {)� ,  (24) 

�����(-) = ;�L������(- + {) + ����(- − {)� ,  (25) 

where �H(,, -) as an estimation of �(,, -).  �� y��(,) is an 
estimation in row, where �y��(, + {) represents the nearest 
neighbor row above �(,), while �y��(, − {) represents the 
nearest neighbor row below �(,).   �����(-)  is an estimation 
in column, where ����(- + {) expresses the nearest neighbor 
column on the right of �(-), and ����(� − 1) expresses the 
nearest neighbor on the left of �(-).  

3.7.6 The Proposed Method of Internet Traffic Matrix 
Reconstruction  
 

This section describes the proposed method of missing 
internet traffic reconstruction using compressive sampling. 
The process of traffic matrix reconstruction in this research 
is shown in Figure 3.                                                 

 

 
Figure 3. Missing internet traffic reconstruction processing using compressive sampling 

 
Traffic that we used is actual traffic on the network.                                
The TM is deleted with missing probability �. After SVD 
analysis, the significant singular values are used to 
construct the estimated TM as given in (6).  The  CS is 
applied on this estimated TM by using sensing matrix J. 
The missing elements are recovered by CS reconstuction 
algorithms which are SRSVD, SVDL1, IRLS, OMP, and 
compared with Interpolation technique. The scaling 
function is applied on the reconstructed CS in order to get 
the comparable amplitude value for each algorithm. The 

performance of reconstruction algorithms are explored by 
comparing reconstructed value to the original TM in term 
of the NMAE and NMSE. 
 

4. Experiment Results and Analysis  
 

4.1 Data 
 

We use the backbones of Abilene topology that is shown 
in Figure 4. The Abilene is a high speed network used for 
research and education which operates in the US and the 
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information is available online [31]. This network consists 
of 12 nodes (� � 12) so that there are 12 × 12 links 
between source-destination (+ = 144). Traffic 
measurement performed every 5 minutes, hence for a day, 
there are 288-time series (� = 288).   

 

 
Figure 4. Abilene Topology [31] 

 

4.2 Performance Parameter 
 

The performance of CS algorithms is analyzed through 
parameters as given below which are commonly used in 
traffic matrix application [17], [1]. The metrics used to 
evaluate the accuracy of the error are Normalized Mean 
Absolute Error (NMAE) and Normalized Mean Square 
Error (NMSE).  

 

+K����, �H� = ∑ ��(,,-)z� H (,,-)�� ,¡:J(,,-)£¤∑ |�(,,-)|� ,¡:J(,,-)£¤     (26) 

 

+K¥���, �H� = ¦�(,,-)z� H (,,-)¦�
�

‖�(,,-)‖��                  (27) 

 
where �H  is the reconstruction traffic matrix. J(,, -) = 0 
represents matrix with the values eliminated on �(,, -). 
NMAE just counts the errors on the lost values.  
 

4.3 Comparison of Reconstruction Algorithms in 
Different Missing Patterns 

 

We analyze the impact of the missing patterns on the 
reconstruction algorithms performance. TM data in a day 
are discarded randomly with probability (�) from 0.02 to 
0.98. We assume the missing pattern follows the uniform 
distribution so that all value of the TM has an identical 
probability to be discarded. For this particular experiment, 
we use Abilene traffic data on April 1st, 2004. 
The simulation results of six data missing scenario using 
5 CS reconstruction algorithms are shown in Figure 5. 
The X-axis expresses the CS method, the Y-axis states the 
missing pattern, and the Z-axis represents the value of 
NMAE. 
In general, the reconstruction results depend on the 
position of the missing data and the amount of missing 
data. NMAE increases along with missing probability. 
The performance shows that SRSVD is the best method 
than others both in low and high missing probability. 
In MRE pattern simulation, the row is randomly chosen, 
then the elements in the row are randomly chosen with 
probability �. This missing pattern is easily reconstructed 

because the amount of data sample provided as more than 
other patterns.  
In MCE pattern simulation, the column is randomly 
chosen, then elements in a column are randomly chosen 
with probability �. Basically, MCE pattern is similar to 
the MRE pattern where the number of samples provided 
is more than other so that it has a good value of NMAE. 
In MRR and MCR pattern, the reconstruction results are 
worse than MRE and MCE pattern. This is due to less 
amount of sample data so that the CS reconstruction has 
difficulty to convert to the correct value. 

 
(a). Missing probability (p=0.02)                  

 
(b). Missing probability (p=0.98) 

 

Figure 5. Comparison between reconstruction algorithms 
for different missing patterns, (a). Missing probability 

(p=0.02), (b). Missing probability (p=0.98) 
 

In MER pattern simulation, the missing elements are 
randomly chosen. The MER is a missing pattern that has 
difficult structure to be reconstructed for all 
reconstruction algorithms, especially at a high probability 
of missing. It is because the random missing pattern in 
MER has no correlation in the available sample elements. 
In CMP pattern simulation, the missing pattern is set by 
the combination of MRE, MCE, MRR, MCR, and MER. 
Because the entire missing patterns are selected at 
random, there is a chance that a few patterns yield the 
same missing data. The pattern can still be reconstructed, 
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although the results are worse as compared to those of 
MRE, MCE, MRR, and MCR. 
 

4.4 Link Sensitivity Detection 
 

The link sensitivity detection is done by eliminating one 
by one the row of TM sequentially. The row represents 
the link connection between a source node to destination 
node. The link connection number is shown in Table 2. 
The connections consist of loop connection, direct 
connection, and indirect connection as shown in Figure 6. 

   
Figure 6. Representation of link connection 

 
We observed the effect of the missing link to NMSE 
parameter for a month in April 2004. Figure 7 shows link 
sensitivity detection for a particular day in different 
reconstruction algorithms. The X-axis represents the 
missing of link connection, and the Y-axis represents the 
NMSE value. All reconstruction algorithms have the same 
results for link sensitivity detection.  
Table 3 shows the five highest sensitive links observed 
during that particular month. Link number 87 is an 
indirect link that connecting between node-3 to node-8, 
while link number 32 is also an indirect link that 
connecting between node-8 to node-3. 

 
 

Table 2. Representation of link connection number between source node to destination node 
 

 Destination Node 

1 2 3 4 5 6 7 8 9 10 11 12 

So
ur

ce
 N

od
e 

1 1 13 25 37 49 61 73 85 97 109 121 133 
2 2 14 26 38 50 62 74 86 98 110 122 134 
3 3 15 27 39 51 63 75 87 99 111 123 135 
4 4 16 28 40 52 64 76 88 100 112 124 136 
5 5 17 29 41 53 65 77 89 101 113 125 137 
6 6 18 30 42 54 66 78 90 102 114 126 138 
7 7 19 31 43 55 67 79 91 103 115 127 139 
8 8 20 32 44 56 68 80 92 104 116 128 140 
9 9 21 33 45 57 69 81 93 105 117 129 141 

10 10 22 34 46 58 70 82 94 106 118 130 142 
11 11 23 35 47 59 71 83 95 107 119 131 143 
12 12 24 36 48 60 72 84 96 108 120 132 144 

 
 

Table 3. The 5 highest link sensitivity detection for a month (April 1st, 2004 – April 30th, 2004) 
 

Number Link Connection 
Number 

Source-Destination Node 
Representation 

Link 
Connectivity 

1 87 3-8 Indirect 
2 32 8-3 Indirect 

3 89 5-8 Direct 
4 134 2-12 Direct 
5 141 9-12 Direct 
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(a). NMSE on April 2nd, 2004                    (b). NMSE on April 3rd, 2004 

 

Figure 7. Detection of link sensitivity for a particular day, (a). NMSE on April 2nd, 2004, (b). NMSE on April 3rd, 2004 
 

 
(a). NMAE of sensitive link – 87                (b). NMAE of sensitive link – 32 

 

Figure 8. Missing scenario for tracing sensitive link composed, (a) NMAE of sensitive link number 87, (b) NMAE of 
sensitive link number 32 

 
Because the link number 87 and 32 are indirect links, then 
we can trace for any links that composed these links. 
Some possible links compositions are as shown in Table 
4. To find out the problems as well as solutions for each 
sensitive link, we compare the scenarios by looking at the 
effect of the missing scenario to NMAE value. 
 

Table 4. The missing scenarios for detecting link 
sensitivity compositions 

Sensitive Link Missing Scenario Composed by link 
number 

87 

1 63-78-55-89 
2 63-18-50-89 
3 99-141-24-50-89 
4 63-78-43-112-94 
5 63-78-43-124-119-94 

 32 

1 56-77-67-30 
2 56-17-62-30 
3 56-17-134-108-33 
4 116-46-76-67-30 
5 116-130-47-76-67-30 

 
Figure 8 shows the comparison between all missing 
scenarios using the NMAE value. It can be concluded that 
the worst link composition on the sensitive link number 
87 is scenario 3 (arranged by link number 99-141-24-50-

89). The best link composition is scenario 4 which is 
arranged by link number 63-78-43-112-94.  
Whereas on the sensitive link number 32, the worst 
composition is scenario 3 that composed by link number 
56-17-134-108-33. The best forming is scenario 4 that 
arranged by link number 116-46-76-67-30. The best 
composition can be selected as a selected route for 
improving the performance of the network 
 

4.5  Detection of Time Sensitivity 
 

Time sensitivity detection is done by eliminating one by 
one the column of TM sequentially. As discussed before, 
a column in TM represents a 5-minute traffic snapshot, 
hence one-day measurement will contain 288 columns of 
TM.   
We investigate the effect of the missing time to the 
NMSE parameter for TM matrix that collected from April 
1st, 2004 to April 30th, 2004. Figure 9 shows an example 
of time sensitivity detection for a day for each different 
reconstruction algorithms. The X-axis represents the 
missing of time, the Y-axis represents the NMSE value. 
Test results show that the missing of one time does not 
affect the value of NMSE, this is because the time series 
values of traffic matrix have a high correlation with each 
other. This applies to all the reconstruction algorithms.  
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(a). NMSE on April 2nd, 2004 

 

 
(b). NMSE on April 3rd, 2004 

 

Figure 9. Detection of time sensitivity for a day, (a). 
NMSE on April 2nd, 2004, (b). NMSE on April 3rd, 2004 

 
The next simulation is to test the effect of missing block 
pattern of time. Missing block pattern indicates missing 
traffic during a certain period of time. We use the range of 
missing block probability from 0 < �F ≤ 0.9. The 
missing block of time is chosen randomly.  
 

 
Figure 10. The missing block of time simulation 

 

Figure 10 shows the missing block of time for a day using 
each different reconstruction algorithms. The X-axis 
represents the probability of missing block of time and the 
Y-axis represents the NMAE value. While the probability 
of missing block of time is more than 0.8, the NMAE 
increases significant, especially on SRSVD and SVDL1 
algorithm. The probability of missing 0.8 means there are 
missing data during 1152 s or 19.2 hours. Due to a large 
block time of missing data, the available data is 
insufficient for an accurate estimation. The sample of data 
does not correlate each other.  

 

5. Conclusions 
 

CS can be used in internet traffic monitoring, such as, for 
reconstruction from missing traffic, detection of link 
sensitivity, and time sensitivity. The results show that 
SRSVD outperforms other CS reconstruction algorithms 
and Interpolation technique for estimating TM in various 
missing patterns. In addition, CS is also able to detect the 
sensitive link, thus it can increase the performance of the 
network, by choosing the best link. In the missing block 
of time, the CS reconstruction algorithms fail to estimate 
the correct TM if the missing probability is greater than 
0.8 or the missing data occur more than 19.2 hours.  
Our future study will be develop our approach to solve 
large amount missing value, especially in the case of 
Missing Element at Random (MER), Combine Missing 
Patterns (CMP), and Missing Block of Time (MBT). 
Because of random missing patterns in large quantities 
makes the TM element samples may have not any 
correlation with each other. The next projects are to 
conduct correlation approach by considering local data 
structures using interpolation technique and combining 
with global data structures through low-rank approach on 
TM  
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