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Abstract 
 

We proposed compressive sampling to reduce the sampling rate of the image and 

improve the accuracy of image reconstruction. Compressive sampling requires that the 

representation of the image is sparse on a certain basis. We use wavelet transformation 

to provide sparsity matrix basis.  Meanwhile, to get a projection matrix using a random 

orthonormal process. The algorithm used to reconstruct the image is orthogonal 

matching pursuit (OMP) and Iteratively Reweighted Least Squares (IRLS). The test result 

indicates that a high quality image is obtained along with the number of coefficients M. 

IRLS has a good performance on PSNR than OMP while OMP takes the least time for 

reconstruction. 
 

Keywords: compressive sampling, wavelet, random orthonormal, orthogonal matching 

pursuit, Iteratively Reweighted Least Squares 

 

Abstrak 
 

Kita mengusulkan penginderaan kompresif untuk mengurangi laju pencuplikan citra dan 

meningkatkan akurasi rekonstruksi citra. Penginderaan kompresif mensyaratkan bahwa 

representasi citra bersifat sparse pada suatu basis tertentu. Dalam penelitian ini 

digunakan transformasi wavelet untuk menghasilkan matrik basis sparsity. Dan 

menggunakan matrik proyeksi diperoleh dengan proses acak ortonormal. Algoritma 

rekonstruksi image menggunakan Orthogonal Matching Pursuit (OMP) dan Iteratively 

Reweighted Least Square (IRLS). Hasil pengujian menunjukkan bahwa gambar 

berkualitas tinggi diperoleh seiring dengan pertambahan jumlah koefisien M. IRLS 

memiliki nilai PSNR yang bagus dibandingkan OMP, sedangkan OMP membutuhkan 

waktu singkat pada saat rekonstruksi. 
 

Kata kunci: penginderaan kompresif, wavelet, orthogonal matching pursuit, random 

orthonormal, Iteratively Reweighted Least Square 
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1.0 INTRODUCTION 
 

      Nowadays, digital image information is widely 

used in various applications such as digital cameras, 

remote cameras, medical images, video, and other. 

Images require considerable storage space and a 

wide bandwidth when the images transmitted. 

Therefore, needed a technique to reduce the amount 

of image data while transmitting, but the quality of 

images are guaranteed. A new technique in sampling 

and reconstructing processes were introduced, 

namely compressive sampling. 
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    Compressive sampling is a method that requires 

signal sparsity so that the signal acquisition process in 

the area of transformation can be carried out under 

the Nyquist rate. Nyquist states that a signal to be 

sampled can be reconstructed into the original signal 

if the sampling rate is at least 2 times the largest of the 

frequency spectrum of the signal. While on 

compressive sampling, signal can be reconstructed 

with a lower sampling rate so that the amount of data 

captured within the specified time will be less than the 

conventional way [1]. Compressive sampling is used in 

many applications such as video [2], medical imaging 

[ 3 ] [ 4 ] [ 5 ], the seismic imaging [ 6 ], radar [ 7 ], and 

so on . 

    Compressive sampling basically had two 

requirements, namely the input signal sparsity and 

incoherency between the sparse matrix and the 

projection matrix [8]. Sparsity means that the 

information content of a signal is much smaller than 

the amount of data. Incoherency have a sense of 

uncertainty in which continuous time signal or 

functions may not be localized in both the time and 

frequency region together. The challenge is how to 

obtain sparse signal in certain areas so that the 

transformation can be done compressive sampling 

system in an image with a low sampling rate and high 

accuracy of image reconstruction. 

 

A. Compressive sampling 

     Signal transformation is a process of converting 

signal from one domain to the other domain. 

Transformation from vector s to S can be expressed as 

the multiplication of the vector s with the 

transformation matrix T as shown in equation (1). 

 

S = Ts ……………. (1) 

 

     Wavelet is a more efficient way to approximate a 

natural image with a number of base elements slightly. 

Mathematically, the wavelet transform of the function 

𝑥(𝑡) is the translation of these functions into a set of 

bases functions follows. 

 

𝑋𝜔(𝑡) = ∫ 𝑥(𝑡).
∞

−∞
 Ψ𝑎,𝑏(𝑡) 𝑑𝑡 ……….(2) 

 

 

      as  Ψ𝑎,𝑏(𝑡)  is a function of the base, which is an 

enlarged version and a shift in the timing of the signal 

bandpass Ψ(𝑡)  named mother wavelet and  defined 

by the equation (3). 

 

Ψ𝑎,𝑏 =  
1

√𝑎
 Ψ (

𝑡−𝑏

𝑎
)................(3) 

  

     where a is the magnification parameter and b is 

the shift parameter. 

 

     Compressive sampling is a relatively new idea in 

signal processing. The main idea is to perform 

sampling with minimum sample where the 

reconstruction from the sampling results approaches 

the original signal. The signal has a sparse 

representation if it is expressed in the appropriate 

base. 

    Mathematically if a vector 𝑥𝜖𝑅𝑛 is represented 

using the wavelet basis Ѱ =  [Ѱ1Ѱ2 … Ѱ𝑁], the vector 

𝑥 can be formulated [ 1 ] : 

 

𝑥 =  ∑ 𝑠𝑖Ѱ𝑖

𝑁
𝑖=1 (𝑡)…………………..(4) 

 

where s is coefficient of x that obtain from 𝑠𝑖 = ⟨𝑥, Ѱ1⟩. 
Matrix form can be written as: 

 

 𝑥 =  Ѱ𝑠  ………………………....(5) 

 

where Ѱ is 𝑁 x 𝑁 matrix,  x and s is column vector 𝑁 x 1  

 

     Signal x declared K-sparse if only K of coefficients s 

worth is not zero while (N-K) coefficient is zero. On 

compressive sampling takes M sample of the signal, 

where 𝐾 < 𝑀 ≪ 𝑁.  

On a linear measurement to calculate 𝑦 as inner 

product between 𝑥 and the set of vector {Φ𝑗}𝑗=1
𝑀  is 

𝑦𝑗 = 〈𝑥, Φ𝑗〉, can be expressed in matrix form [9]: 

  

𝑦 =  Φ𝑥 = Φ ψ 𝑠 =  𝛳𝑠………………………....(6) 

 

     with y an output signal that has been compressed, 

Φ is a projection/measurement matrix sized 𝑀 x 𝑁 , Ѱ 

is the base matrix sized 𝑁 x 𝑁, and 𝛳 = Φ ψ is 

reconstruction matrix sized 𝑀 x 𝑁.  
  

     Compressive sampling method requires two the 

base matrix, which is the projection/measurement 

base Φ and sparse base Ѱ are incoherent. Incoherent 

means the duality between time and frequency and 

expresses the idea that objects having a sparse 

representation in Ѱ must be spread out in which they 

acquired, just as a Dirac or spike in the time domain is 

spread out in the frequency domain. The level of 

coherence both base determines the minimum 

amount of sampling to reconstruct the exact signal. 

Coherence illustrates the degree of similarity of the 

base, of little value if they are different, and valuable 

one if both are identical [10]. 

      

    A measurement or projection is a step to determine 

the coefficients to be transmitted or stored. The more 

coefficients are selected, then the better of the 

reconstruction quality, but the greater the number of 

bits stored resulting bandwidth requirements are also 

getting bigger. Measurement matrix are Gaussian 

matrix, Bernoulli matrix, random orthogonal matrix, 

hadamard matrix, etc. 

       Sparse representation is obtained by selecting the 

right base. Transformation method for sparse matrix 

consist of discrete Fourier Transform (DCT), Discrete 

Wavelet Transform (DWT), Discrete Multi Wavelet 

Transform (DMWT), etc. 

       At the receiver, signal x must be recovered from 

the measurement results obtained, the signal y. 



3                    Indrarini Dyah Irawati, Andriyan B. Suksmono / Jurnal Teknologi (Sciences & Engineering) 72:1 (2015) 1–6 

 

 

Classification and compressive sampling 

reconstruction algorithm is shown in Figure 2 [11]. 

Compressive sampling reconstruction algorithm are 

grouped into six, namely the minimization of convex, 

non-convex minimization, greedy algorithm, iterative 

thresholding, Bregman iterative, and combinatorial 

algorithm. 

 

 

 
Figure 1: Compressive sampling Reconstruction 

Algorithm and Their Classification [11] 

 

 

B. Orthogonal Matching Pursuit (OMP) 

 

     OMP is one of the group of greedy algorithms. 

Greedy algorithm uses an iterative approach of the 

coefficient signal to the signal convergence is 

reached, or get an approximate increase of sparse 

signal in each iteration by trying to calculate the 

measured data mismatch [12]. OMP generates a 

signal recovery quickly with a simple algorithm. The 

method starts by looking for columns that have the 

greatest relevance to the measurement and repeat 

these steps to see the correlation between the 

columns with the residual signal, which is obtained by 

subtracting the estimated contribution to the vector 

signal measurements. 

     Remember the equation (6) is a linear combination 

of N column from Φ. So that  𝑦 has a n-term 

representation over dictionary Φ.  Φ is a measurement 

matrix and denotes its column by Φ =

{Φ1, … … … … Φ𝑁  } To identify the ideal signal 𝑥, must 

be determine column Φ that participation on 

measurement 𝑦 .  The idea behind the algorithm is to 

choose columns in greedy fashion. At each iteration, 

chosen column Φ which is highly correlated with the 

residual part of 𝑦. Then reducing any contribution to 

the 𝑦 resulting residue. After k iteration, algorithm will 

identify the right set from the columns. The procedure 

of the algorithm are: 

 

-Initialize the  residual𝑟0, index set Δ0, and the iteration 

counter 𝑡 = 1. And    Φ𝑜 is an empty matrix. 

-Find the index 𝜆𝑡 that solves easy optimization 

problem by (7). If the maximum occurs of the inner 

product, break the tie deterministically [13]. 

 

arg 𝑚𝑎𝑘𝑗=1..𝑀|< 𝑟𝑡−1, Φ𝑗 >| ……………..(7) 

 

Augment the index set and the matrix of chosen 

atoms: 

Δ𝑡 = Δ𝑡−1 ∪ {𝜆𝑡}  𝑎𝑛𝑑   Φ𝑡 = [Φ𝑡−1  Φ𝜆𝑡
]……  (8) 

 

Solve a least squares problem to obtain a new signal 

estimate: 

𝑥𝑡 = arg 𝑚𝑖𝑛𝑥 ‖𝑦 −  Φ𝑡𝑥‖2..……............…..(9) 

 

Calculate the new approximation of the data and the 

residual: 

𝑎𝑡 =    Φ𝑡 − 𝑥𝑡  𝑎𝑛𝑑 𝑟𝑡 = 𝑦 − 𝑎𝑡…………...(10) 

 

Increments 𝑡 and returns to equation (7) until 𝑡 < 𝑘. 

The estimate 𝑥′ for the ideal signal has nonzero 

indicates at the component listed Δ𝑘. The value of the 

estimate 𝑥′ in component 𝜆𝑗 equal the 𝑗𝑡ℎ component 

of 𝑥𝑡. 

 

 

C. Iteratively Reweighted Least Squares (IRLS) 

The method of iteratively reweighted least squares 

(IRLS) is used to solve certain optimization problems for 

equation (6) with objective functions of the form  
ℓ𝑝norm reconstruction [14], where 0 < 𝑝 < 1: 

 

𝑚𝑖𝑛 ‖𝑥′‖
𝑝′
𝑝

  , subject to  Φ𝑥′ = 𝑦  ………………(11) 

 

On case 𝑝 < 1, IRLS completes (8) by replacing ℓ𝑝 
with weighted (w)ℓ2 norm [15]: 

 

𝑚𝑖𝑛 ∑ 𝑤𝑖𝑥𝑖
′2𝑁

𝑖=1  , subject to  Φ𝑥′ = 𝑦  ………..(12) 

 

Equation (11) can be written as: 

 

𝑚𝑖𝑛 ∑ |𝑥𝑖
′(𝑛−1)

|
𝑝−2

𝑥𝑖
′2𝑁

𝑖=1 ,subject to  Φ𝑥′ = 𝑦 (13) 

 

Weight (w) can be calculate as first orde 

approximation of the objective ℓ𝑝: 

𝑤𝑖 =  |𝑥𝑖
′(𝑛−1)

|
𝑝−2

…………………………...(14) 

Solution of the equation (12) can be obtained from 

the next iteration 𝑥′(𝑛)
: 

 

𝑥𝑖
′(𝑛)

= 𝒬𝑛Φ𝑇(Φ𝒬𝑛Φ𝑇)−1𝑦…………….(15) 

https://en.wikipedia.org/wiki/Objective_function
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where 𝒬𝑛 as a diagonal matrix with the following 

value:  

1

𝑤𝑖
=  |𝑥𝑖

′(𝑛−1)
|

2−𝑝
………………………….(16) 

 

2.0 Literature Review 
 
    According to the research done by Fan Yang, et al 

[16], they examined image reconstruction for 

compressive sampling using Discrete Multi Wavelet 

Transform. Projection matrix is get from Bernoulli and 

Gaussian measurement. And reconstruction algorithm 

is OMP. DMWT has multi scale geometric so that 

provide many possible sparsity matrix. PSNR on DMWT-

OMP has the best value than combination between 

DCT-OMP or DWT-OMP.   

   On the research of Sheikh Md., et al [17], Image 

Compression Based on CS Using Wavelet Lifting 

Scheme proposed the new method using sparse basis 

named CDf9/7 wavelet transform. Three different 

measurement matrix as Gaussian matrix, Bernoulli 

matrix, and random orthogonal matrix are used. The 

OMP and Basis Pursuit (BP) are applied to reconstruct 

each level of wavelet transform. The result showed 

that the CDF9/7 wavelet transform given better 

quality of image compressive sampling than existing 

method. The parameter measurement consist of 

PSNR/UIQI/SSIM. 

 

 

3.0 Methodology 
 

  Research methodology includes quantitative as 

numerical processing and analyzing the data 

obtained from the simulation results. Part science 

encountered when discussing the basic theory of 

sampling according to Nyquist, then compared with 

the workings of compressive sampling.  

    On the theory of compressive sampling, system 

needed basis matrix transformation to obtain the 

sparse nature of signal, projection matrix, and 

reconstruction algorithm. In this research, proposes a 

compressive sampling image reconstruction based on 

sparse representation of the image in wavelet 

transform domain. At the base projections Φ used 

random orthogonal matrix [18]. As for the 

reconstruction algorithm compared Orthogonal 

Matching Pursuit (OMP) and Iteratively Reweighted 

Least Squares (IRLS) because it is greedy. OM Block 

diagram compressive sampling is design as shown on 

figure 3. 

 

         
     x 
Input signal 

 

                           
           ẋ 
     Reconstruction Signal 

 

Figure 2: Block Diagram Compressive sampling 

 

   

     The input are images for 8-bit 256x256 pixel, Lena. 

Comparing parameters PSNR, compression ratio and 

CPU time at several measurement of M.  

 

4.0 RESULTS AND DISCUSSION 
 
     A compression requires the accumulation of 

energy on the transformation of the region only to a 

small number of coefficients so that a high 

compression rate with high quality reconstruction. In 

the experiment used wavelet transform with the 

vector base as shown in Figure 3 below: 

 
Figure 3: Basis Wavelet 

        
    The original image are used Lena with a size of 

256x256. Figures 4 and 5 show the original image and 

reconstructed at measurement coefficient M = 50 , M 

= 100 , M = 150 and M = 200 on the experimental of 

OMP and IRLS algorithm. 

 

(a) Origin (b) M=50 (a) M=100 

 

 

 

(d) M= 150 

 

(e) M= 200 

Figure 4: OMP Image Reconstruction 

 

 

 
(a) Origin 

 
(b) M=50 

 
(b) M=100 

Ѱ: DWT 
Φ:  

Random 
Orthogonal 

Reconstruction 

Algorithm:  

OMP and IRLS 
Ѱ-1 
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(d) M=150 

 

(e) M=200 

         Figure 5: IRLS Image Reconstruction 

 

 

    From the results shown above indicate that the 

larger the coefficient of M, the better the image 

quality. The picture quality is closer to the original 

image is shown by the high value of PSNR. The 

relationship between PSNR with M is shown in Figure 6 

below, where PSNR value increased by increasing the 

number of measurement coefficient M.  

 

Figure 6: PSNR 
 

   Figure 7 shown compression ratio. As the amount of 

measurement coefficient increases, compression ratio 

decreases. 

 

Figure 7: Compression Ratio 

 

      Figure 8 shows the relationship between the 

processing time and the amount of measurement 

coefficient M. While the measurement coefficient 

increased, the time required for compressive sampling 

process increased too.  

 

 

Figure 8: CPU Time 

 

 

 5.0 CONCLUSION 

 

Image reconstruction can obtained only a few 

number of sample using compressive sampling. So 

that can reduce bandwidth needed for transmission 

and reduce the space of storage. The conclusions for 

this research are as follows: 

1. The quality of image reconstruction depends on 

the number of coefficient measurement. The 

better quality of image, more measurement M are 

gotten 

2. More measurement M increase CPU time 

3. More measurement M decrease compression 

ratio 

4. PSNR and CPU time of IRLS is bigger than OMP. Its 

means that IRLS given better quality image 

reconstruction but the process needed longer 

time. 
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